02.июл.2025
От сырого кликстрима к чистым датасетам: как мы в Lamoda Tech варим данные
Привет, Хабр! Это тимлид DS группы ранжирования и поиска Дана Злочевская и тимлид группы разработки Михаил Нестеров из Lamoda Tech. Как и у любой крупной e-commerce платформы, данные — наш главный актив. Они помогают бизнесу принимать обоснованные решения, а пользователям — получать персонализированный, качественный опыт во всех продуктах Lamoda.Поэтому в продакшене ежедневно работают десятки ML-пайплайнов, а в Airflow запускаются сотни DAG-воркфлоу. Данные готовят и используют более 100 специалистов из самых разных команд: аналитики, дата-сайентисты, ML-инженеры, маркетологи — у каждой свои задачи и логика работы с ними. Однако с ростом команд, задач и инфраструктуры мы начали сталкиваться с рядом системных проблем:- Разрозненные подходы к подготовке данных. Каждая команда собирала данные «под себя», по своим правилам и в своем формате, что приводило к дублированию информации и нерациональному использованию вычислительных ресурсов.- Дублирование логики. Одни и те же преобразования выполнялись в разных пайплайнах с минимальными отличиями — это не только неэффективно, но и увеличивает риск ошибок.- Сложности с переиспользованием. Найти нужные данные, понять, как они были получены, и интегрировать их свой пайплайн — становилось нетривиальной задачей.- Рост time-to-market. На каждый новый ML-продукт или эксперимент у команд уходило всё больше времени просто на «разогрев»: сбор данных, выравнивание форматов, отладка пайплайна.Тогда мы поняли, что пора систематизировать наш подход к хранению и работе с датасетами, и реализовали собственный фреймворк на основе Apache Spark — Feature Storage, который сейчас является стандартом в компании. А позже мы выделили отдельное решение для специфичных кликстрим-данных — Action Storage.В этой статье мы хотим поделиться нашим опытом построения этих инструментов и рассказать, как со временем эволюционировал наш подход к хранению данных в Lamoda Tech. Надеемся, он будет вам полезен и подарит парочку интересных идей. Читать далее
Название: От сырого кликстрима к чистым датасетам: как мы в Lamoda Tech варим данные
Ссылка на источник:
https://habr.com/ru/companies/lamoda/articles/923830/?utm_source=habrahabr&utm_medium=rss&utm_campaign=923830